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1.0 INTRODUCTION

A problem of current interest to the Navy is the automatic detection and classification of faults in
mechanical systems such as the transmissions, gearboxes, and bearings of helicopters. The
problem is important for both economic and safety reasons. Using automated fault detection and
classification, machinery repair can be undertaken as needed and can prevent catastrophic failure.
This condition-based maintenance approach is more efficient and cost-effective than the use of
predetermined maintenance schedules. Additionally, automated fault detection and classification
systems can alert machinery operators, such as helicopter pilots, of the onset of a mechanical
problem, thus allowing the pilot to take precautions, such as landing the aircraft, before a
potentially catastrophic failure occurs.

The machinery fault detection and classification problem is general in nature, and the
methodology developed in Phase I is applicable to a variety fault detection scenarios involving
multichannel and multisensor time series sensor data. Current helicopter gearbox fault detection
techniques make use of metal particle detectors in the transmission oil as well as vibration
sensors. For the vibration data, relatively simple metrics and thresholds are specified using
analytic models for the gearboxes and bearings. Unfortunately, the performance of this approach
is only as good as the model developed. In many cases, the interaction of fault conditions with
the mechanical system is time varying and highly nonlinear so that anticipated signatures may
not be seenl. Specifying an accurate model is at best difficult and often impossible.
Additionally, such model-based processing is inherently inflexible, being applicable only to the
specific system of interest. Model-based fault detection and classification algorithms cannot
easily be adapted to accommodate machinery (transmission) design changes, new fault detection
tasks, or the addition of new sensor types.

For the Phase I effort, we have developed a variety of neural networks, coupled with spectral
feature extractors, to solve the fault detection and classification problem. A novel, hierarchical
neural network architecture was developed that fuses multifeature and multichannel
accelerometer vibrational sensor data to successfully detect and classify fault conditions. The
approach was successfully applied to three different types of rotating machinery (helicopter
gearboxes, fire pumps, and condenser pumps). The approach also allows for the evaluation of
the utility of the various feature extractors and for the channels to include in solving the fault
detection/classification problem at hand.

The goal of the Phase I research effort was to develop and demonstrate a system that uses
multiple feature extractors and a neural net classifier to perform fault detection and classification

1D. Rock, D. Malkoff, and R. Stewart, "AI and Aircraft Health Monitoring," AI Expert, Feb. 1993.



for rotating machinery. The systems developed are sensitive to fault conditions and robust with
respect to normal operation and fault variations. The primary tasks accomplished in the

development and demonstration of the system for Phase I were the following:
"Identify and develop feature extraction processing. Several features were
examined in Phase I: the short-time Fourier transform (STFT), instantaneous time-
frequency representations (TFRs), Prony's model method, and the wavelet transform
using the Gabor wavelet filter.

" Assess the performance of the various feature extractors. The real accelerometer
data was processed using each of the candidate feature extractors, and an evaluation
of the utility of each was made.

" Train the neural network. Training templates for each fault class were selected
using the feature vectors, and multiple three-layer perceptron neural networks were
trained with these templates. The outputs from the first-layer nets were merged and
used to train a second-layer net using the hierarchical neural net approach 2,3.

" Test the system. System performance was assessed by running test accelerometer
data through the system and determining the system's probability of fault detection
(PD), probability of false alarm (PFA), probability of correct classification (PC), and
probability of misclassification (PMC).

The approach developed in the Phase I effort was applied to three different data sets. The data

sets included two channels of data from the Hollin's data set4, six channels of data from an
aircraft carrier fire pump, and six channels of data from a condenser pump. All the

measurements were of mechanical vibrations of the system. The approach developed was easily
adapted to handle all of the different types of mechanical systems and vibration measurements.
In all cases, the prototype systems developed gave perfec, performance for the data sets supplied

for the Phase I effort. That is, each system developed gave the correct classifications with no
resulting false alarms for all the data sets processed.

It was also found that the simple FFT feature extractor was sufficient to solve the problem for all

three of the mechanical systems. The FFT is the most computationally efficient of all the feature

extractors considered. This result is important when considering real-time implementation for

future development. It was found that the high-resolution time/frequency feature extractors gave
relatively poor performance. It is believed that the high-resolution feature extractors give too

much detail when included in the overall system. The high-resolution features are not robust

features for solving the detection/classification problem considered here; there is too much

variation within the data. FFT processing, on the other hand, tends to smear the features so that

2 T. Brodheton, D. Fogel, and E. Mews, "Final Report for Applications of Data Fusion to Signal Processing Phase I
SBIR," DARPA order no. 5916, April 1992.
3 T. Brotherton and E. Mears, "Application of Neural Nets to Feature Fusion," 26th Asilomar Conference on
Signals, Systems, and Computers, October 1992.
4 M. Hoilins, "'The Effects of Vibration Sso Location in Detecting Gear and Bearing Defects," 41st Mechanical
Failures Prevention Group Proceedings, 1988.
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much of the detail and variation are lost. The result is a more robust feature for detection and

classification.

It was found that multichannel processing gives more robust performance than single-channel

processing. By processing multichannel data, the probability of correct classification was
increased while the probability of false alarm was simultaneously reduced. In the six-channel

pump data, faults in the test data sets did not appear on all of the channels that were used in the

training data sets. The channels that the fault did appear on were fault dependent. For the two-

channel Hollin's data set, it was found that only a single channel was required to solve the

detection/classification problem; the second channel did not add any information to aid detection

and classification.

The remainder of this report gives more detailed descriptions and details found in the Phase I

effort. Section 2 describes the multifeature/hierarchical neural network approach used for

processing of the three data sets. Section 3 gives detailed results for processing of the three data

sets. Section 4 gives conclusions and Section 5 gives recommendations. Appendix A is a copy
of a conference paper developed under Phase I.

2.0 APPROACH

The original Phase I proposal proposed multifeature fusion using an architecture like that shown

in Figure 1. In this system, feature vectors from multiple signal processing techniques are

appended into a larger "fusion" vector, and these expanded vectors are used as inputs to a three-

layer perceptron neural network for fault detection and classification.

However, subsequent research under DARPA SBIR funding demonstrated the superiority of a

hierarchical neural network data fusion architecture. The advancements made in the DARPA

program were used as a starting point for the fault detection research. The hierarchical

architecture developed and tested in the DARPA program is shown in Figure 2.

In the generic system shown in Figure 2, multiple channels and/or feature extractors feed their

own individual first-layer neural networks. These neural nets make their own independent

detection and classification decisions based on prior training. The outputs from the first-layer

networks are vectors of activation levels. The activation level for each normal or fault class

indicates each first-layer net's decision as to the operating condition of the machinery. The

output activation vectors from the first-layer nets are then merged (appended) into a fusion
vector. The time series of fusion vectors from the first-layer nets are then used as inputs to the

second-layer fusion neural network. This network makes the final fault detection and

classification determination. In effect, the first-layer neural nets perform a nonlinear filtering

3 a Mio.vd.mwý
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operation on the data in order to produce smaller (reduced dimensionality) feature sets. The

second-layer net fuses the "filtered" information to solve the detection and classification

problem. While the generic architecture of Figure 2 was used for all of the processing in Phase I,

each of the individual data sets employed a problem-specific fault detection and classification

system. The specific systems used are discussed in Section 3.0.

2.1 Hierarchical Neural Net Training and Testing

Figure 3 shows a high-level training and testing flow diagram for the hierarchical neural

network. Initially, the accelerometer data is partitioned to develop training and testing data sets.

The training data is then run through each of the different feature extractors, as shown in

Figure 2. The output feature space representations are examined and exemplars representative of

the events of interest are selected for each feature extractor.

The single-feature exemplars are then used to train the set of first-layer single-feature neural

networks. To finish the training of the hierarchical architecture, each of the trained first-layer

neural nets is rerun on the training data. The output "activation" level vectors from each network

(indicating the input data's degree of membership for each fault class) are used to form a single

fusion vector, that is, the various outputs are aggregated together to form the "features" for input

to the second-layer neural net. A second exemplar selection is then performed to derive

exemplars with which to train the second-layer network. This fusion net is then trained with the

fusion exemplar vectors. Finally, the entire architecture is tested by inputting the test data. The

resulting fault detection and classification is determined by comparing the class activation levels

at the output of the fusion net.

2.2 Feature Extraction

A major issue in the design of a fault detection and classification system is the selection of

appropriate features. The goal in selecting features is to choose a set that can characterize signals

of interest sufficiently so that classes are well separated when solving the classification problem.

ORINCON has investigated a large variety of feature extraction algorithms5. The feature

extractors investigated and developed for the Phase I effort are discussed below.

Short-Time Fast Fourier Transform (STFT): The short-time fast Fourier transform
was a good candidate technique because of its ease of implementation. For real-time
applications, fast algorithms and fast chips for hardware realizations are available.
Transition from a prototype system to a dedicated hardware system is low cost. The

5 T. Brothdron, T. Pollard, R. Barton, A. Krieger, L. Marple, "Application of Time-Frequency mnd Time-Scale
Analysis to Underwater Acoustic Transients," Proc. IEEE Inernational Symposium on Time-Frequency and Time-
Scale Analysis, Victoria, B.C., Canada, October, 1992.
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technique does not handle extremely short-uration events (on the order of the FET
size) or very narrowband events (for reasonable FF7 sizes). The STFT feature is

found as follows. Let x(:) represent the input data set. Let X,(J) represent the FF1T of
the n-th segment of data. That is,

:24
N-I J---xn(/) =-XL(t)ax(nT +t)

N= (1)

where typically T = NI2 (i.e., "50% overlap") and N is a power of 2. wt) is a window

function, such as the Hamming window. The magnitude squared is taken of the
output from FF1T processing and then the log is taken to form the FF1 feature set
characterization of the x(t). The feature input is a set

This set is used to form the feature space for any particular time/frequency segment of
the input data.

The Adaptive Optimal Kernel Time-Frequency Representation (AOK TFR): An
instantaneous time-frequency representation (TFR) gives a higpe-resolution
characterization of the data in time, as well as FaT resolutions in frequency for
signals of interesto The particular TFR that ORINCON used for Phase I was the

6h inputdata



adaptive optimal kernel (AOK) TFR developed by Baraniuk and Jones6,7. The AOK
TFR is a transformation of Cohen's class, which uses a radially Gaussian signal-
dependent kernel that changes shape to optimally smooth the distribution.

The optimal kernel, 0, for a signal is defined as the solution to the following
optimization problem:

maX 29JZIA(r, V) O(r,)12rdrdV,

subject to

r
2

O(r, VW) = e 2o2(y) (4)

T O1 ýr10(rV )l2rdrdV • a, a (0(5)

A(r, V') is the ambiguity function (AF) of the signal in polar coordinates. $2(')
measures the spread of the smoothing kernel as a function of angle. Once the optimal
kernel is computed, the TFR is given by

P(t,wo) = -L I"'. I_'" (,• (,• -•maa
21ro~ .-lj A(O,?r) 0(0,,r) ej-i*?0rdOdTr(6/3t (6)

The representation is good for characterizing short-duration and nonstationary events.
The AOK TFR is computationally expensive. As with the STFr feature extractor, a
time sequence of the AOK TFRs form the input retina.
Prony's Model Method: Prony's model method assumes the signals of interest are
modeled by a sum of damped sinusoids. The model is well suited for characterizing
impulsive types of events. The Prony model is of the form:

p

x[t]-= Akexp[(ak +i2xfkXt-1)+ijk]
k=1 (7)

where x[t] is the observed time series data, p is the model order, Ak is the amplitude of
the k-th coefficient, Ctk is the corresponding damping termfk is the center frequency,
and Ok is the initial phase. The parameters of the model can be estimated using least
squares techniques . The spectral estimate is found by Fourier transforming the
model defined in equation (7). Since the Prony method assumes that the signals of
interest are impulsive, the model found and the spectra derived from the model give

6 R.G. Baraniuk and D.L. Jones, "A Radially Gaussian, Signal-Dependent Tune-Frequency Representation,"
ICASSP '91, Toronto, May 1991.
7 R. Baraniuk, D. Jones, T. Brodernm, and S.L. Marple, "Application of Adaptive T'nue-frequency Representations
to Underwater Acoustic Signal Processing," 25th Asilomar Conference on Signals, Systems & Computers, vol. 2,
November 1991.
8S. L. Marple, Digital Spectral Analysis with Applications, Prentice-Hail, 1987.
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higher-resolution spectral estimates for impulsive events and sequences of impulsive
events than found with standard FFT processing. The Prony model feature set is:

I log(•nIy (f 1), tlr.n:5 t2, f, <: f :9 f, 1, (8)

where XnPrOnY(f) is the spectral estimate found as described above.

The model is relatively easy to estimate, so it is computationally efficient when
compared to the instantaneous time-frequency representations, but still slower than
the STFT. Once the exponential parameters have been estimated by the Prony
procedure, spectral plots are created by taking the Fourier transform of the resulting
model. This technique, along with other parametric modeling techniques, has better
time and frequency resolution properties than the STFT.
Wavelet Transform: Wavelet analysis, also known as time-scale analysis, is
essentially a method of "constant Q" filtering9 . The transform is implemented using a
set of band pass filters whose bandwidths are proportional to their center frequencies.
Thus, very narrow bandwidth filters (with long time durations) were applied at lower
frequencies, while wider bandwidth (with very short time durations) filters were
applied at higher frequencies. Wavelet transforms are especially useful when short-
duration transient events are superimposed upon long-duration, low-frequency
components.
The wavelet transform of a function fx) represents a decomposition of the function in
terms of dilated and shifted versions of an analyzing wavelet function V'x). The
transform is linear, energy preserving, and invertible so for every functionf(x), there
is a unique, continuous 2-D transform Wf(su). The wavelet transform can also be
regarded as a time-frequency representation of the signal, in which the parameter s >
0 corresponds to frequency and the parameter u E R corresponds to temporal shift.
The wavelet transform has many interesting properties that make it particularly well
suited as a signal representation.

The wavelet transform can be viewed as a time-frequency map of the signal in which
the frequency information is generated by a bank of proportional bandwidth filters.
This entire map can be regarded as a single feature of the signal. Because of the
inverse relationship between bandwidth and temporal support, the wavelet time-
frequency representation automatically provides greater temporal resolution for high-
frequency signal components. This is often very useful when analyzing transient or
highly nonstationary phenomena.
The wavelet features presented herein were generated using an analytic Gabor
wavelet. The wavelet is defined in the frequency domain by the following equation

e 2 • -2 if - > 0

0 if <0, (9)

where o0 = 2x and o= 6.1182. This choice of parameters results in a time-frequency
map in which the bandwidth of each frequency bin is approximately 1/16th of an octave.

90. Rioul and M. Vetterli, 'Wavelets and Signal Processing," IEEE Signal Processing Magaine, October, 1991.

8 .,nf .am



2.3 Neural Network Classifier

The fundamental building blocks of the fault detection and classification system are the individual

neural networks. There are a multitude of classifiers that can be loosely regarded as "neural"
architectures. During training, neural networks learn how to interpret the input features to solve the
detection/classification problem. Essentially, neural nets can be viewed as nonlinear matched filters.
They simultaneously detect and classify signals of interest when they appear in their input retinas.

For the Phase I effort, we used a hierarchical neural net approach as shown in Figure 2. Each neural
net in the system is a multilayer perceptron neural network trained using the back-tropagation
algorithm. Multilayer perceptron nets have been used extensively and successfully at ORINCON for
various detection and classification problems. Specifically, all of the neural networks used in the
Phase I systems were three-layer perceptrons with 20 hidden nodes in each of the two hidden layers.
The neural networks were trained such that their mean-squared output activation errors were

between 0.C09 and 0.026. The three-layer perceptron architecture is shown in Figure 4. For solving
the Phase I problem, the multilayer perceptron (MLP) approach is fine since this architecture has
been shown to implement a Bayesian classifier10. For novelty detection (i.e., detection and
classification of new, unknown events), the MLP/Bayesian approach may not be adequate11 . For
Phase 1I, alternative neural net architectures will be considered.

3.0 REAL DATA PROCESSING RESULTS

3.1 Hollins Helicopter Gearbox Data

The Hollins data set provided by ONR is two-channel vibrational data from two separate

accelerometer sensors (sensor tracks 5 and 6) recorded from the gearbox in the tail of a TH-1L

helicopter. The data provided included examples of normal operation as well as examples with

the following five seeded fault conditions: Bearing, Inner Race; Bearing, Rolling Element;

Bearing, Outer Race; Gear, Spall; and Gear, 1/2 Tooth Cut.

The initial system developed for the helicopter data was a single-channel, multifeature app-nach.

That is, only one channel (sensor track 5) was used in the processing, but data from this channel

was processed using all four feature extractors discussed in Section 2.212. Figure 5 shows the

10 M. Richard and R. Lippmann, "Neural Network Classifiers Estimate Bayesian a posteriori Probabilities," Neural
Computation, 3,461-483, 1991.
11A. Leonard and M.A. Kramer, "Radial Basis Function Networks for Classifying Process Faults," IEEE Controy
Systems Magazine, April 1991.
12 T. Brothertm, T. Pollard, and D. Jones, "Application of Time-Frequency and Time-Scale Representations to
Fault Detection and Classification," Proc. of the International Symposium on Time-Frequency and Time-Scale
Analysis, Victoria, B.C., Canada, October, 1992.

9
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single-channel, multifeature architecture. The first-and second-layer nets were trained using the

methodology outlined in Section 2.0.

In Figure 5, each of the feature extractors is one of the alternative spectral estimates described in

Section 2.0. The input to the first-layer networks is a two-dimensional array, in time and

frequency, of spectral estimates. Let XnM(f) denote a spectral estimate found using technique M

at time scan n and frequencyf M c (FFT, wavelet, Prony's method, or the AOK time/frequency

representation). Then the retina input to each of the first layer networks is

{logjXYM(f ),1ti n S t2,fl S f •121. (10
n :11} (10)

Figure 6 is an example of the system's operation. The input data is a cut that includes the
Bearing, Outer Race fault. Figure 6 shows five separate windows, with one window for each of

the first-layer feature extractors/neural nets, and one window for the second-layer fusion net.

Each of the windows has two sections. Figure 7 is a cartoon showing the details for the first-

layer featuredneural net windows in Figure 6. For the first-layer feature extracts/neural nets the

section on the left of the displays shows the time series of features extracted from the data. That

is, each row on the left is a separate spectral estimate of the data using the indicated feature

extractor, with time running on the y-axis and frequency on the x-axis. These feature vectors are

accumulated into multirow, two-dimensional retinas, described above, which are used as the
input to the first-layer neural nets. With each new spectral estimate, the input retina is updated

and fed to the corresponding neural network.

The right-hand portion of each window represents the neural net's output for each retina input.

Each column represents the activation level corresponding to each class of interest. Column 6

(the rightmost column) represents the normal condition, i.e., no faults. The neural net outputs are

temperature encoded, with white indicating the highest activation level (high probability of class
membership), and black representing the lowest activation level (low probability of class

membership). The parameter settings used for each of the feature extractors and hierarchical

neural networks are shown in Table 1.

The Bearing, Outer Race fault was designated as class number 3, meaning that ideally the net

activations for column 3 would be white, with all other columns black. However, one can see

that all of the first-layer networks have trouble with the distinction between classes 2 and 3.

The Prony and AOK neural networks show a great deal of misclassification. However, the

fusion net demonstrates ideal performance. The AOK and Prony neural networks had

consistently poorer performance when compared to the FFT and wavelet neural networks.
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Figure 8 shows an expanded view of the AOK feature extractor applied to the Gear, 1/2 Tooth

Cut data.

The problem of the AOK and Prony methods probably has two causes. First, no attempt was

made to synchronize the data for each rotation (no sync, or tachometer, signal was provided).

Thus, when input retinas were selected for these feature extractors, the gears were in a random

rotational state, thus increasing retina-to-retina variance for the very-high-time-resolution AOK
and Prony feature extractors. In the future, synchronizing the high-resolution time-frequency

feature extractors with a sync signal may improve their classification performance.

In addition, the neural network can only have good classification performance if the testing data

"looks" similar to the training data. If there is variation between the training and testing data, the
neural net will have degraded performance. It is probable that the impulsive transients seen with

a fault condition have a great deal of variance from rotation to rotation (refer to the periodic

transients indicated in Figure 8). Because of the high time-resolution properties of the Prony and

AOK feature extractors, these transient variations are characterized quite well, thus producing

input retinas for the neural nets with a high degree of variance, which degraded classification

performance. In an interesting twist, the lower-resolution (in time) feature extractors, the FFT

and the wavelet, always had superior performance. The inherent time averaging and smoothing

of these feature extractors helped to accentuate only the stationary fault features necessary for

13
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classification. Thus, in the single-channel, multifeature system of Figure 5, only the FFT and

wavelet outputs were merged for the fusion net. The connections for the Prony and AOK net

outputs were, in effect, cut.

Returning to Figure 6, the fusion-net window shows the merged (appended) FFT and wavelet

activation vectors on the left, and the fusion net outputs on the right. Figure 9 is a depiction of

the input and output sections of the fusion net window of Figure 6. The output activations from

the first-layer nets have been replicated for the purposes of system synchronization (FFI" net

activations by a factor of 8, and wavelet net activations by a factor of 2). Unlike the first-layer

nets, the fusion net performance is essentially perfect, with column 3 solidly lit, no false alarms,

and no misclassifications. The fusion net has successfully fused and integrated the information

from the FFT and wavelet first-layer nets to improve the system performance.

The results shown in Figure 6 prompted the development of the system shown in Figure 10. This

is the final system used for quantitative testing on the Hollins data set. For this system, only FFT

(1,024-point) processing was used for the first-layer nets. The system shown in Figure 10 is a

multichannel system in which each sensor channel is processed with a 1,024-point FFT, and the

frequency range is partitioned into low and high frequencies for input into four separate first-

layer nets.

In this case, it was found that the networks associated with channel 2 (sensor track 6) did not

improve the classification performance. The reason for this is unclear. Thus, only the two channel 1

nets (low and high frequencies) were merged for input to the second-layer fusion network. Unlike

the fusion net of Figure 6, the merged inputs to the fusion net of Figure 10 have been rearranged,

with neurons from the first-layer nets corresponding to the same class grouped into neighboring

positions in the merged fusion vector as shown in the insert on Figure 10. This regrouping makes no

difference in the performance of the neural network, but it does aid the human observer. All of the

processing examples in the remainder of this proposal used this regrouping methodology. Table 2

shows the processing parameters used for this system shown in Figure 10.

Figures 11 and 12 show the response of the system to a cut containing the Bearing Inner Race

fault (class I - Figure 11) and the Bearing Roller Element fault (class 2 - Figure 12). For these

examples, the input data file was not used in the system training. Thus, the system had never

been exposed to the data shown. The partitioning of training and testing data is discussed more

fully below. The input retinas used are shown in the channel 1 and fusion net windows. Like the

preceding example, both channel 1 nets do a relatively good job of making the fault

classification, but the fusion net, after merging the two channel I nets, provides essentially

perfect performance.

16
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Table 2. "Multichannel" Processing Parameters

Fs 48 KFz
S FF = - 1024 pts

• Hamming Windowed
50% Overlap

:• Low Frequency Retina
Bins 1-225 (50-10546 Hz)
x 10 Time Scans

F r 9High Frequency Retina
Bins 220-469 (10312-22000 Hz)
x 10 Tune Scans

Fusion Net Retina
12 Classes
x 100 Tune Scans

17 a -• m mm

~ High Frequency Retin



9 3w~jO -AN IJWON u3

V A'Ui - ION IpflSN VOPI

Z invi -ION IWIIUN MOW4l

L tWWA N pulN UOPnfl

Pu~x)N - ION WOnN PuZ

RuuON -ON PunsN 1

U,"f S

c L 13i, ION WOnN uZ

ob

00

Cu U
0w

f8ir~.huma



UeWO

9 in.
V 0in.

rI 1ne

wUw

l.4 wJJO

UU

sseV, en±. u

-~c -

-1 +

v0 0

19 our*

*ý f~
oA 0VF4 X6MM



IA

i-I

.3 s9)O LJ± linied 0
c0

o.U
00

lin.e88 8 88
C. . . . . ..- -2 . .b,

isel gnl, lie.

C~~ lcld ' c

_No

S- 8 jc

= 20



Quantitative performance measurements were made using test data. The files used were 60
seconds in length, and training and testing data were partitioned as follows. When more than one
file was provided for a given fault class, a subset of files were used for training, and the
remaining files were used for testing. Often, only one file was provided for a given class. In
these cases, the first portion of the file was used for training, and the second portion of the file
was used for testing. Thus, training data was selected from the first portion (15 seconds) of
training files, and testing data included the last portion (45 seconds) of training files and the
entire duration of the separate testing files not used in training. Because of the relative
stationarity of the data within a given file, it is the performance on the separate testing files,
which the system had never been exposed to, that provides a true measure of system
performance.

A decision threshold was defined as the difference between the highest fault class activation level
and the normal class activation level. A fault detection was declared if the difference between
the highest fault class activation and the normal class activation exceeded a predefined threshold.
In general, this threshold value is set to zero, and the classification decision simplifies to that
class with the highest activation. For all of the test results presented here, the threshold value
was equal to zero, and the highest activation was the declared class.

Table 3 shows a confusion matrix for the system of Figure 10. The input fault class is indicated
on the horizontal axis, and the resulting system output is indicated on the vertical axis. Each
element of the matrix indicates the number of times that the system declared the output class and
the number of decision opportunities for each class. Ideally, the confusion matrix should be

diagonal, indicating 100 percent correct classification. However, Table 3 shows that the system

had some confusion between fault classes 2 (Bearing, Rolling Element) and 3 (Bearing, Outer

Race) when class 3 was input to the system. Further investigation and examination of the data

showed that one of the class 3 files, cut 8, has a spectrum similar to the class 2 data, thus causing

the confusion. Table 3 represents the testing when the system was not trained using cut 8. Note
that although there is some fault classification confusion in Table 3, there are no missed fault

detections and no false alarms.

To improve the system performance, cut 8 was subsequently included in the training set, and
testing was performed again. After being trained with cut 8, the system confusion matrix was

diagonal. Even after training with cut 8, there were still two files (one normal, and one Bearing,
Inner Race fault as seen in Figure 11) used in the testing that had not been used in the training.
Table 4 summarizes these results. Because there were no false alarms throughout the testing, the

probability of false alarm, PFA, is upper bounded by the reciprocal of the number of normal class

decisions.
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Table 3. Hollins Data Confusion Matrix Trained Without Cut 8

Truth

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Normal

Fault 1 8550
-100%

Fault 2 3664 8550
-100% -57%

0 Fault 3 8550
E -43%

Fault 4 3664

-100%

Fault 5 8550
,,100%

Normal 12214
, 100%

Table 4. Hollins Data Performance Summary

Data Threshold 0 P(d) P(fa) ( Confusion Matrix Summary

Trained with
Cut 8 <8x10"5  Diagonal

Test All Data

Trained
without Cut 8 .5 Diagonal except 57% of Class 3

0 1 <8x10" Misclassified as Class 2
Test All Data

(D Nominal Threshold Setting - 0 (i.e., Max Fault Neuron - Normal Neuron).

® P(fa) Estimates on Per Scan Basis. When NO False Alarms in Data P(fa) - 1/(total # of
normal condition scans).

22 f awnm iillm llnmirnnnn. m



3.2 Fire Pump Data

The second set of data processed was six-channel vibrational data from multiple fire pumps. The

system used to process this data is shown in Figure 13. Table 5 shows the processing parameters

used. In this architecture, each channel of data is processed with 1,024-point FFTs. Each

channel has its own neural network, and as before, the first-layer network outputs are merged in a

fusion net for the final fault classification. The fire pump data had four fault conditions, as well

as the normal condition (five classes).

Ch 1 Ch2 Ch 3 Ch4 Ch 5 Ch6I I I , I I I

FFT FFT FFT FFT FFT FFT

I I I I I I

I
Fusion

NN

Figure 13. Fire Pump and Condenser Pump Multichannel Processing Flow Diagram

Table 5. Fire Pump Multichannel Processing Parameters

Fs = 50 KHz

FFT = 1024 pts
Hamming Windowed
50% Overlap

Retina (Same for Each Channel)
Bins 1-200 (50-9765 Hz)
x 10 Time Scans

Fusion Net Retira
30 (6 Channels x 5 Classes/Channel)
x 100 Time Scans
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Two examples of the processing are shown in Figures 14 and 15. Figure 14 shows the system

response to a cut containing fault class 1. This file was not used in the system training. The faint

boxes in the channel 4 and fusion net windows indicate the retinas used for the respective neural

networks. One can see that channels 4 and 6 do an excellent job of classifying the fault, and

channel 5 does a partial job of correct classification. Channels 1, 2, and 3 do not classify the

fault condition correctly. The fusion net, however, successfully arbitrates and integrates the first-

layer information to achieve perfect performance.

Figure 15 shows the system response to one of the normal condition files. Again, the system was

not trained with this cut. In this example, ideal performance would be for column 5 to be white,

with all other (fault) columns black. One can see that all of the channels do relatively well,

except channel 6, which does very poorly, false alarming consistently on fault class 4. Again, the

fusion net gives perfect performance.

The above examples demonstrate the necessity for multichannel measurements and fusion. The

data is variable enough that there is no guarantee, for a given fault condition, that the test data

(Figures 14 and 15) will look like the training data for every channel. If one were dependent on

only one channel for fault classification, the resulting performance would be severely degraded.

By making use of all of the channels, there is a higher probability that a subset of the channels

will make the proper fault classification, thus allowing the fusion architecture to make the final

correct decision.

Table 6 summarizes the fire pump system performance. Again, the data was separated into

training and testing portions using the methodology outlined in Section 2.0. For the fire pump

data set, the files provided were typically 15 seconds in length. Training data was selected from

the first 4.26 seconds of the training files. Test data was taken from the last 10 seconds of the

training files, as well as from the entire duration of the subset of testing files not used in training.

Table 6 indicates the performance on all of the test data, as well as on only the test data taken

from files that had not been used in the training (six out of 16 files). For this data set, there were

no false alarms, no missed detections, and no misclassifications. The PFA performance is upper-

bounded in the same manner described previously.

3.3 Condenser Pump Data

The condenser pump data set had the same format as the fire pump data, that is, six channels of

vibrational data. The architecture used for the condenser pump data processing was the same as
that for the fire pump, and was shown in Figure 13. The condenser pump data set had two fault
conditions, as well as the normal condition (three classes). The pro, essing parameters used are

shown in Table 7.
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Table 6. Fire Pump System Performance Summary

Data Threshold 0 P(d) P(a) Q Confusion Matrix Summary

Test All Data 1 <8xl 0-5 Diagonal

Test on
Separate 0 1 <1.5xl 0 -4 Diagonal
Test Data

(O Nominal Threshold Setting - 0 (i.e., Max Fault Neuron - Normal Neuron).

(Q P(fa) Estimates on Per Scan Basis. When NO False Alarms in Data P(fa) - 1/(total # of
normal condition scans).

Table 7. Condenser Pump Processing Parameters

Fs = 50 KHz

FFT = 1024 pts
Hamming Windowed
50% Overlap

Retina (Same for Each Channel)
Bins 1-100 (50-5000 Hz)
x 10 Time Scans

Fusion Net Retina
18 (6 Channels x 3 Classes/Channel)
x 100 Time Scans
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Examples of the processing are shown in Figures 16 and 17. Figure 16 shows the system
response to a class 2 fault condition. Retina boxes are drawn in the windows for channel 6 and

the fusion net. As for the previous examples, the results shown are for independent test data.
One can see that channels 4, 5, and 6 do relatively well, while channels 1, 2, and 3 have very
poor performance. Again, the fusion net successfully merges the information and produces a

perfect classification.

Figure 17 shows the system performance with normal condenser pump data. Again, the system
was not trained with this cut. One can see that for this example, all of the channels have
marginal performance, with channel 3 completely misclassifying the normal data as a fault (false

alarm). The two best channels are 1 and 2, in contrast to the example of Figure 16. Like the fire

pump examples above, these two examples indicate the utility of multichannel measurements and

data fusion in the hierarchical neural net system. Again, the fusion net provides essentially

perfect performance.

A performance summary for the condenser pump data is given in Table 8. This table has the
same format as Table 5 (Section 1.4.2). Four of the eight files provided were not used in the
training, and their test results are in the lower portion of the table. Again, there were no
misclassifications, missed detections, or false alarms during the testing.

4.0 CONCLUSIONS

The primary conclusions to be drawn from the Phase I effort and test results are as follows:

System Flexibility. The generic hierarchical system developed in Phase I was proven to be
extremely flexible. The same general architecture has been applied to three very different data
sets, with perfect performance for each. The system is capable of extension and expansion,
depending upon the number of sensor types, number of channels, and number of feature
extractors that prove useful toward solving the problem. Because the hierarchical neural net
system is not model based, it can be quickly reconfigured and retrained to accommodate
machinery design changes or new fault detection tasks.

Perfect System Performance. The hierarchical systems developed for the three data sets
provided perfect performance. That is, with proper training, the systems achieved perfect
fault/normal classification for all of the test data run. However, because the test data was
limited, more extensive testing and quantitative analysis would need to be undertaken to produce
more reliable statistical performance estimates.

28



=

o o on t ... ..

0o:•:300,0 -33.00

00:07:06.00 - •i
FN l I ,it chat= IN, •1 1* r0 ,,-!o "2

.. . .W-• 060 .

00:0601.00:06:II, -

000::0.003.

0000:06:33.00
00:07:06.00 -- I

0 2440 4880 7620 940 12ý2 102W 00:07:06.00

FredO 101 1 scant 342u j

0 240 40 7 M0 200 1466 0
00:06 011 00cntj

r Channlel-3

,..

00:0:01.0 -, ,.00:060:1.00

0::3.000:06330.00

0 2440 480 7320 9780 1200 2146•ui0 2 0

F-eq( 101 1 w.Ant ,b q 0 10: 10:14.00

ri Chamnnml-* 0o:o2:46._ __

choiei: CWhI Con" r AApplk:aim~o rAp:oc:

00:06:0100 Oo:04:22.00

00:06:33.00 00:04:M0.00

00:01 06 00 00:05:27.00 04 1 1

fq(11 0 2440 4880 7320 9760 1:26 14860 ' 2rs 00: 1 w:14 23

froI 101 1 Wcat ow i

Figure 16. Condenser Pump System with Class 2 Fault

29:4-.00

hIcfO---- onr• _l--. ll 00--3......



00:10:33.00-

~~~00:11:3.000 5 3700 -

I= sm 2MO 14i*O 0 2140 460 7320 VM12D60 46

Clok: Chke:Con"bo rO)L Applikations r3

00:10-33.00 )0: o: 30 . 1

00:11:05.00 ______________________ 00:11 :05.00 -

00:11:37.00 00:a1:37.00

0 t2440 460M 7320 9M6 1320 1u0 0 2440 46 06 21 48
Iraq[ 101 1a OW MJ r~C101]1 soaw~ yCIN

chalm- Fw-.r-31 I C-U* r APP"00U 'l ChMNo !tF2!Lj AppNCaR

00:09:41.00

00:10:33.00 00:05:42.00

0011 :05.00 00:06:1400W

.0011:37.00 00:06:46.OWO
o 2440 4660 73260 9760 12ý0 14660

Vreq( 101 1 scntbu 00to7:19.00

rliC8Ul 00:07:90.00

Cbskl FA C31-1 coW ApplkatvdE r1 o:0:22.00

* 30:06:54.00

00:1033300 000:60

-l 00:0J29.0
001103500 tr40) KA4

Iraq( 101 ) scant b/u

Figure 17. Condenser Pump System with Normal Data

30



Table 8. Condenser Pump System Performance Summary

Data Threshold (0 P(d) P(fa) Q Confusion Matrx Summary

Test All Data 0 1 <1.72xl 0-4 Diagonal

Test on
Separate 0 1 <2.5xl0-4 Diagonal
Test Data

(D Nominal Threshold Setting - 0 (i.e., Max Fault Neuron - Normal Neuron).

(•) P(fa) Estimates on Per Scan Basis. When NO False Alarms in Data P(fa) - 1/(total # of
normal condition scans).

FFT Feature Extractor Sufficient. For each of the three data sets, perfect performance was

attained using only FFT feature extraction. The use of FF1 processing with intelligently selected

parameters would simplify the transition to a real-time system. However, it is possible that more

complex fault detection and classification scenarios will require more advanced, and
computationally expensive, feature extraction. Thus, although the high-resolution feature
extractors such as the AOK TFR and Prony modeling were not needed for these data sets, they

may be of use in the future, particularly in conjunction with a tachometer (sync) signal.

Necessity for Multifeature and Multichannel Processing. All three of the final systems
developed benefited from multifeature (Hollins data) or multichannel processing (fire and
condenser pump data). Reliance on only one feature or channel could severely degrade system
performance due to data variability issues between training and testing data. The performance of
the second-layer fusion net was seen to greatly improve overall performance by arbitrating
between sometimes conflicting first-layer results. In addition to multichannel processing, the

hierarchical approach described here can easily include additional sensor types and static

information (for example flight conditions) as well.

5.0 RECOMMENDATIONS

In follow-on Phase H, ORINCON would design, develop, build, and deliver a prototype

helicopter transmission fault detection and classification system to ONR for field evaluation.

The system would be developed and tested using accelerometer and other sensor data from the
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transmission of a CH-46 helicopter. This data would be supplied by ONR. The Phase H effort

would include further research into advanced feature extraction techniques and evaluation of new

classification algorithms. New classification algorithms are required to address the novelty
detection problem. The general architecture of the system would be the hierarchical neural

network approach used in Phase L. Figure 18 shows a generic flow diagram for such a processing

system. Specific objectives to be accomplished in Phase II are listed below.

Feature Extraction. Additional feature extraction techniques that we believe have potential for

better characterizing the data will be investigated. These feature extraction techniques include

data adaptive STFT processing, higher-order statistical processing (bispectra), cyclostationary
processing, and cross-channel coherence. Additionally, the data supplied by ONR is expected to

have a tachometer signal that can be used for cycle synchronization. The use of this signal in

template selection and retina generation will be examined, and the utility of extremely high-

resolution time-frequency representations (such as the AOK TFR and Prony's method) will be

re-examined. It is anticipated that selection of processing parameters that make use of the

tachometer signal will improve high-resolution feature extractor performance.

Alternative Classifiers/Neural Nets. In Phase I, only three-layer perceptron neural networks were

utilized. Although we have had outstanding results with this classifier, the multilayer perceptron

(MLP) is not ideally suited to novelty detection. That is, the response of the MLP to data for which

it has not been trained is not well defined 13. We would like to investigate classifiers that behave in a

more predictable manner when confronted with new data. These classifiers will indicate if the

transmission is operating in an unknown, but not normal, manner, and will provide a measure of

similarity between the present condition and trained fault conditions. This property will aid in the

detection of untrained fault conditions and will provide an indication as to the severity of advancing

degradation. The classifiers to be examined, in addition to the MLP, will be the Radial Basis

Function (RBF) neural network and the Fuzzy Min-Max Neural Netvork (FMMNN). Because of

the inherent modularity of the hierarchical neural network architecture, it will be straightforward to

substitute the new classifiers for the MLP networks used in Phase I.

Quantitative System Analysis. Using the data set provided by ONR, extensive quantitative

system analysis will be undertaken to evaluate statistical performance. This testing will serve

two purposes. First, it will aid in the design of the system, allowing quantitative evaluation of

the utility of various data channels, feature extractors, and classifiers, in the fault detection and

classification solution. Testing will be performed on both the first-layer nets as well as the

second-layer fusion net. After the final design of the system is established, testing will be

13 J.A. Leonard and M.A. Kramer, "Radial Basis Function Networks for Classifying Process Faults," IEEE Control

Systems Magazine. April 1991.
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performed to establish the overall system capabilities. Performance measures to be evaluated

include the probabilities of fault detection, false alarm, correct classification, and misclassification.

Additionally, we would like to investigate the performance of the system as a function of fault

severity or degradation advancement. This analysis is dependent upon the supply of data with

varying degrees of fault severity.

System Prototype Delivery. The systems developed in Phase I were implemented using

ORINCON's i860-based, real-time rapid prototyping system known as PRIISM. The Phase II

research will also be completed using the PRIISM hardware and software system. At the completion

of Steps 1, 2, and 3 above, the PRIISM system will be modified to accept real-time sensor data from

the tachometer and transmission accelerometers of the CH-46, and the system will be delivered to

ONR for field testing on the CH-46.

System Miniaturization Design. As part of the Phase II effort, a preliminary design will be

completed for miniaturization of the prototype system and transition to a commercial product. One

promising candidate for this design is the Signal Processor Packaging Design (SPPD) shared-

memory multiprocessor developed by Rockwell. Each SPPD module can accommodate up to

16 TMS32OC30 processors and eight parallel and eight serial ports (32 and 6 Mbytes,

respectively). A 16-processor module can perform up to 500 MFLOPS. The package is small

(68 cm3 , 75 gin) and rugged, and requires only 11 watts (5 volts) of power. The processors support

the assembler, C, and Ada programming languages.
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Abstract short-time fast Fourier transform is found as follows: let

x(t) represent the input data set; let Xn(f) represent the

Underwater acoustic transients from man-made FFT of the n-th segment of data. That is,
structures and biologics are rich in structure and detail, I N-1 2zft

diverse in terms of duration, and highly nonstationary,. X. (f) = Y , w(t) x(nT + t) e-N

Orincon has an ongoing program to find algorithmic N t-(1)
analysis techniques that can extract features of these where typically T = N/2 (ie., "50% overlap") and N is a
transients for purposes of high confidence classification, power of 2. w(t) is a window function, such as the
It has been found that no one analysis technique can. Haming window. Multiple STFT scans are appended
adequately capture features from all the possible together to form the TFR.
transient classes. Presented here are side-by-side
comparisons of numerous time-frequency and time-scale 2.1 The Short Time Autoregressive (AR) Model
representations of unclassified acoustic transients. The The short-time autoregressive transform is similar to
techniques illustrated include the Short-Time Fourier the STFT, except the modified covarance algorithm [11 is
Transform (STFT) tuned to different analysis bandwidths, substituted for the windowed Fourier transform at each
the Gabor -Wavelet Time-Scale Representation (TSR), time increment. For each segment normally evaluated by
the Adaptive Optimal Radially Gaussian Kernel (AOK) the STFT, the AR power spectral density function
TFR, and model based TFRs. The strengths and replaces the STFT computation:
weaknesses of the various analysis representations are Tpw
discussed. Xn(f) = 2

1. Introduction [mle-j2,6mT
= (2)

The purpose of this paper is to present an honest side-

by-side evaluation of several TFR and TSR techniques in which the AR coefficients aim] are computed by means
with real transient data in order to validate the of a least squares algorithm from the data samples. The
performance claims found in the literature. It also AR technique can provide a higher resolution over the
provides an opportunity to see the relative performance of STFT without the complication of the quadratic terms
several TFR/TSR techniques side by side. The general found in the quadratic TFRs or the need to generate a high
conclusion is that it is hard to beat the interpretability and time-resolution scaling analysis wavelet of the TSRs.
robustness of the the classic STFT when operating with 2.1 The Singular Value Decomposition (SVD)
real data.. Section 2 discusses the various processing
techniques used. Section 3 provides a real data The SVD approach uses the eigenvectors associated
processing example. Section 4 contains conclusions, with the maximal eigenvalues of the data covariance

2. The Processing matrix. If x(t) is assumed to be the sum of a signal
process and noise

2.1 The STFT x(t) = s(t) + e(t), (3)

then the covariance matrix R is given by
The STFI TFR is the best understood and most robust R=R$ +Re (4)

of the various TFRs. Its linear response makes
interpretation of features easy to understood. It is where Rs and Re are the signal and noise covariance
computationally efficient to compute with the FFr. The matrices. Assuming that the background noise is white,
only handicap of the STFT is limited resolution due to the then the noise covariance matrix Re=f2I. Using the
windowing relative to some fast time-varying feature. The SVD, R can be written as



R = (k 2)VkVT + 2  where j and k are integers and "*" indicates complexR=i a2)Vk-a conjugation. To precisely define the averaging operation,k=1 (5) we make use of a frequency-domain weighting function
Xk are the eigenvalues and Vk are the associated W, which can be any nonnegative function of two

eigenvectors and there are assumed to be n eigenvalues / variables that satisfies the constraints
eigenvalues associated with the signal. Equation(5) is the (i) W(0o1,t0 2 ) = W(-eo1 , -o32), and
key to the subspace representation approach that is
exploited by the MUSIC algorithm. Denote a matrix Ts (ii) f f W(m1 ,O02)d0o 1d(02 = 1.
as . . (9)m

T= VkVT Here a quadratic weighting function was chosen. Given
k=1 (6) any such weighting function, we define the scaled version

The result of using Ts on any vector in Rn characterizes W = N2b2cwyN1_co,,N1_¢(2
the signal subspace and therefore the signal itself. For WN (10)
display purposes, we use the Fourier transform of Vk.
Here we assume that m=l. This representation is well where c is a parameter in the range 0 < c < 1. Adjusting
suited for single sine waves. We have mainly used this the value of c alters the bias-to-variance ratio of the
representation for detection; the SVD spectra for any bispectrum estimates. We also make use of a special
signal is significantly different then that of white noise. frequency-domain window function 0, defined by

2.1 The Bispectrum j a 0(mod N),or

The bispectrum of a stationary random process conveys i,j) = i + j =- 0(mod N)
information about the third-order cumulant structure of otherwise
the process. The bispectrum is the two-dimensional

Fourier transform of the two-dimensional third-order This function is used to suppress the undesirable

cumulant sequence. For a zero-mean random process the influence of the generalized periodograms at a subset of
bispectrum B(w01,o2) is defined by points in the frequency domain. The bispectrum estimate

is
B(0Ol,,02) = Y ,C 3 ( 1, .n 2 )e-i~c'' +W2n2) B(c)o ,C02 )

n•,=-n'=" , (7)

where G3(nl,n2) is the third-order cumulant sequence. - ) y .
The bispectrum has many useful properties, but perhaps fi- J=-

the most important is that the bispectrum of a stationary (11)
Gaussian randm process is identically zero. Since The entire collection of M bispectrum estimates forms an
background noise is generally a composite signal that M-dimensional vector. The M points in each vector are
approximately Gaussian, its bispectrum is near zero. On arranged in order of increasing value for each of the
the other hand, the nonlinearities present in many of the frequency components, with the first component o 1
mechanisms that generate real-world signals of interest varying most rapidly.
often induce significant non-Gaussian structure, and many
such signals exhibit non-zero bispectra. In such cases,
detection and classification performance can often be An instantaneous time / flequency representation (TFR)
enhanced by operating on bispectral statistics rather than gives a high resolution characterization of the data in time
second-order statistics. In effect, the bispectral statistics as well as FFT resolutions in frequency for signals of
exhibit an increased signal-to-noise ratio. interest. The particular TFR that we use here is the

Here the bispectrum estimates are computed for M = adaptive optimal radially-Gaussian kernel TFR developed
520 points uniformly distributed over the principal by Baraniuk and Jones [2][3]. The TFR uses a radially-
domain of the bispectrum. The estimate is computed by Gaussian signal-dependent kernel that changes shape to
forming a weighted average of a number of generalized optimally smooth the distribution.
periodograms, which are given by The optimal kernel, 0, for a signal is defined as the

I(j, k) = k X(j)X(k)X* (j + k) (8) solution to the following optimization problem:
mrax °2z )WA2rdrdv (2)



subject to parameter s > 0 corresponds to frequency and the
r2  parameter u E R corresponds to temporal shift. The

O(r, iy) = e 202 () (13) wavelet transform has many interesting properties that
make it particularly well suited as a signal representation
[61.

21 ,Jý 0(r, 2 rdrdV!5 a, a Ž0 The wavelet transform can be viewed as a time-
drd (14) frequency map of the signal in which the frequency

information is generated by a bank of proportional-
A(r,'P) is the ambiguity function (AF) of the signal in bandwidth filters. Because of the inverse relationship
polar coordinates. Once the optimal kernel is computed, between bandwidth and temporal support, the wavelet
the TFR is given by time-frequency representation automatically provides

P(to) =-- J- greater temporal resolution for high-frequency signal
271 (15) components. This is often very useful when analyzing

The representation is good for characterizing short transient or highly nonstationary phenomena.

duration and nonstationary events. The AOK TFR is The wavelet features presented herein were generated

computationally expensive. As with the STFT feature using an analytic Gabor wavelet. The wavelet is defined

extractor, a time sequence of the AOK TFRs form the in the frequency domain by the following equation

input retina.
2.3 The Prony Model Method H(o))={ e - e 2 JifwŽ_

Prony's model method assumes the signals of interest 0 if o<O
are modeled by a sum of damped sinusoids. The model is (17)
well suited for characterizing impulsive type of events where on0 = 2n and (- =6.1182. This choice of parameters
[5]. The resulting model gives a variety of parameters results in a time-frequency map in which the bandwidth
that may be exploited for characterizing transient of each frequency bin is approximately 1/16th of an
waveforms. The Prony Model is of the form: octave.

xnnl= _Ak exp[(ak + j27rfk)(n - I)T + iOk 1 3. Real Data Processing Results
Two data sets are considered; the dropping of a wrench.

where x[n] is the observed time series data, p is the model and a whale call. Both events are complicated time-
order, Ak is the amplitude of the k-th coefficient, (Xk is varying signals that are difficult to analysis. The sample
the corresponding damping term, fk is the center rate was 32000 samples per second.
frequency, T is the sample interval, and Ok is the initial The STFT TFR uses 64-points per scan with 56 points
phase. The parameters of the model can be estimated of overlap between scans. The data was windowed using
using least squares techniques [1]. Several different noise a Hamming window and zero padded to generate a 512
discrimination techniques have been developed for use point transform.
with the Prony model method. In the processing The AR TFR uses a 64-points analysis window with 56
presented here a time sequence of spectral estimates points of overlap and order 20 AR/linear prediction filter.
similar to those defined for the AR model in equation (2) The AR function is evaluated at 512 points in the
are computed using the Prony model parameters. frequency domain using an FF1.

2.4 Wavelet Processing The Prony model uses 64-point analysis window with a
56 point overlap and an order 16 for the wrench and order

The wavelet transform (WT) is a time domain 20 for the whale. The Prony model is evaluated at 512
representation of a signal in terms of dilated and shifted points in the frequency domain with an FFT transform of
versions of suitable analyzing wavelets. The wavelet the model coefficients.
transform of a function f(x) represents a decomposition of The AOK TFR uses 512 points in the analysis window
the function in terms of dilated and shifted versions of an for each scan. The data overlap between scans is 504
analyzing wavelet function WV(x). The transform is linear, points (i.e. 8 points are skipped between scans). The
energy preserving, and invertible so for every function kernel volume constraint was set to a = 2.25.
f(x), there is a unique, continuous 2-D transform Wf(s,u). The SVD algorithm uses a 512 point FFT on the largest
The wavelet transform can also be regarded as a time- eigenvalue eigenvector. The algorithm used an 8x8
frequency representation of the signal, in which the
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Figure 1. Various TFRs for Wrench Drop Data
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Figure 2. Various TFRs for Whale Call Data
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